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Detecting Heteroplasmy from High-Throughput Sequencing
of Complete Human Mitochondrial DNA Genomes

Mingkun Li,1,* Anna Schönberg,1 Michael Schaefer,1 Roland Schroeder,1 Ivane Nasidze,1

and Mark Stoneking1,*

Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect

methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should

enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, becausemany independent reads are gener-

ated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false

detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy

with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We

then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via

a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational

spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation

rate at heteroplasmicmutations is significantly higher than that estimated for all mutable sites in the humanmtDNA genome.Moreover,

there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from

the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism

spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can

provide novel insights into genome-wide aspects of mtDNA heteroplasmy.
Introduction

The mtDNA genome remains one of the most widely

studied DNA segments in humans. It is particularly useful

for studying population and evolutionary genetics because

of its abundance in human cells, its uniparental, nonre-

combining mode of inheritance, and its high mutation

rate compared to that of the nuclear genome.1 Although

each individual is typically characterized by a single

mtDNA type, in fact each individual is a population of

mtDNA genomes, and the presence of multiple mtDNA

types within an individual is termed heteroplasmy.

Although little noted at the time, the first report of het-

eroplasmy in humans was in 1983, involving a study of

a noncoding region of human mtDNA from 11 human

placentas.2 Heteroplasmy has been investigated most

often in correlation with mitochondrial disease, aging,

and cancer.3–6 To date, more than 400 mtDNA mutations

have been associated with human disease, and most were

observed in heteroplasmic states, with pathogenic muta-

tions coexisting with normal mitochondrial genomes.7

This suggests that the heteroplasmic level is of particular

interest, as the disease phenotype becomes evident only

when the percentage ofmutantmolecules exceeds a critical

threshold value. Although this value differs for different

mutations and in different tissues, it is usually in the range

of 70%~90%.8,9

Originally, heteroplasmy was believed to be quite rare in

healthy individuals,10,11 but subsequent studies found

many non-disease-related heteroplasmies.12–15 Moreover,
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heteroplasmy has started to play an important role in

some forensic investigations.16,17 Thus, heteroplasmy can

also be a useful genetic marker. Regarding heteroplasmy

as the intermediate stage between the generation of muta-

tions and the fixation of mutations in the individual or

cell, it represents polymorphisms within the populations

of mitochondrial genomes in one cell or tissue. Thus, it

can be a potential resource for studying the mutational

pattern, possible role of natural selection, and even

the existence of recombination in mtDNA.18 For example,

de novo mtDNA mutations in cancer tissues preferen-

tially locate at the same positions as ancient variants in

the human phylogeny, indicating similar selective con-

straints.19 Understanding the basis, extent, and forces

influencing the occurrence and subsequent fate of hetero-

plasmic mtDNA mutations is one of the principal chal-

lenges facing scientists and clinicians in the field of mito-

chondrial genetics.

A variety of techniques have been employed for hetero-

plasmy detection, including Sanger capillary sequencing,13

high-performance liquid chromatography (HPLC),20

pyrosequencing,21,22 SnaPshot,23 high-resolution melt

(HRM) profiling,24 a temporal temperature gradient gel

electrophoresis (TTGE) strategy,25 the Invader assay,26 an

amplification refractory mutation system,27 and surveyor

nuclease.28 However, all of these methods have disadvan-

tages, including the following: for some methods, the

candidate heteroplasmic position needs to be defined first;

themethodmay not allow determination of the actual het-

eroplasmic position; the level of heteroplasmy cannot be
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quantified accurately; and/or the method is too labor

intensive to be applicable to large numbers of samples.

Moreover, the efficiency of detection can vary substan-

tially from laboratory to laboratory, even when the same

method is applied, as a result of different instruments,

chemistries, or standards for calling heteroplasmy.29,30 In

addition, most of the previous studies have restricted their

examination to the control region or the hypervariable

segments thereof; very few studies have analyzed hetero-

plasmies in the coding region,31 even though these are

likely to be of more importance for disease association.

Therefore, more accurate and efficient methods are needed

for the examination of heteroplasmy across the entire

mtDNA genome.

Next-generation sequencing technologies can, in prin-

ciple, provide the needed data, because millions of DNA

reads can be produced in a single run at low cost.32 This

technology has been widely used in the detection of SNPs

on a genome-wide scale,33–37 and in one such study,34

pooled DNA from 66 individuals was used to successfully

detect SNPs. More interestingly, this study also found

that the allele frequency inferred from the reads had

a significant correlation with that inferred from genotyp-

ing. Such DNA pools resemble the mtDNA heteroplasmy

scenario and therefore suggest that this approach should

be useful for heteroplasmy detection.

However, the relatively high sequence error associated

with next-generation sequencing technologies can pro-

duce false positives (i.e., sequencing errors may be falsely

considered to be heteroplasmies). Moreover, problems

could arise if PCR was involved during preparation of the

sequencing library, because PCR may alter the proportion

of different alleles and amplification error may also result

in false positives. In this study, we used simulations,

phiX174 control sequence data, artificial mixtures, and

replicates to design and evaluate criteria for accurate detec-

tion of heteroplasmic positions with the Illumina GA plat-

form. We then applied these criteria to a data set of

complete mtDNA genome sequence reads for 131 individ-

uals from five Eurasian populations that had been gener-

ated via a parallel tagged approach and sequenced with

the Illumina GA platform. The results of this large-scale

investigation provide insights into genome-wide patterns

of mtDNA heteroplasmy.
Material and Methods

Data
ThemtDNA sequence reads used here were generated in a previous

study (unpublished data). In brief, the entire mtDNA genome was

amplified from 147 individuals from five populations (Georgia,

Armenia, Azerbaijan, Iran, and Turkey) in two overlapping prod-

ucts of about 9.7 and 7.3 Kb and sequenced on the Illumina

GAII platform (GAII; San Diego, CA, USA) via a multiplex

sequencing protocol for sequencing libraries;38,39 details are

described elsewhere (unpublished data). Out of 147 samples, the

reads from 131 met the criteria for accurate detection of hetero-
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plasmy, developed below. Of these, 97 were sequenced once with

single-end 36 bp reads to an average coverage of 653, 17 were

sequenced twice with single-end 36 bp reads (because of insuffi-

cient coverage from the first lane) to an average of 783, and 17

were sequenced once with single-end 76 bp reads to an average

coverage of 2113. In addition, four samples originally sequenced

once with 36 bp reads were resequenced (with the use of new

PCR products amplified from the original DNA templates) with

single-end 76 bp reads for assessment of reproducibility.
Assembly Strategy
The reads were assembled with the software MIA,40 the revised

Cambridge reference sequence (rCRS) used as the reference.41

MIA is optimized for circular genome assembling and performs

gapped assembling iteratively: after a consensus is called, the reads

are realigned to the consensus and a new consensus is called; this

process iterates until it converges on a single consensus sequence.

For the 36 bp reads, maximally, three mismatches or two mis-

matches plus one gap were allowed to successfully map the read,

whereas for the 76bp reads, five mismatches or four mismatches

plus one gap were allowed. In addition, any read with more

than two bases having a Phred-like quality score (QS) lower than

15 was removed (for 76 bp length reads, the threshold was five

bases with QS < 10), and duplicate reads (reads mapping to the

same position with same orientation on the reference) were

removed, keeping the one with the highest QS.
Artificially Mixed Samples
The template DNAs from two individuals differing at 25 positions

in their complete mtDNA genome sequences were mixed in dif-

ferent proportions (1:1, 1:3, and 1:9). DNA concentrations were

measured by a NanoDrop ND-1000 spectrometer (NanoDrop

Technologies, Wilmington, DE, USA), diluted and mixed in the

desired proportions, and then used for long-rang PCR amplifica-

tion and Illumina GAII sequencing with 76 bp reads. These artifi-

cially mixed samples were used for examination of the correlation

between the heteroplasmy level (mixture proportion) and minor

allele frequency estimated from the reads.
Simulation Framework
To evaluate the impact of sequencing error on the detection of

heteroplasmy, we performed simulations for varying levels of

sequencing error, heteroplasmy level, and sequencing depth. For

each simulation, one biallelic heteroplasmic position was assigned

to the genome randomly, with the heteroplasmy level (minor

allele frequency) set to be 5%, 10%, 20%, 30%, or 40%. Reads

with a specific length (36bp, 76bp) were generated randomly

from the rCRS to reach an average coverage of 363 or 763. The

sequencing error in the simulation was evenly distributed along

the reads and along the mitochondrial genome, with the error

rate set to be 1%, 0.5%, 0.3%, or 0.1%. Because Illumina GA

uses the same laser to excite two pairs of nucleotides (A/C and

G/T), the pairs produce similar emission spectra and are thus

poorly distinguished by optical filters, which results in a higher

proportion of errors involving A/C and G/T.39,42 On the other

hand, heteroplasmy is highly biased toward transitions (A/G,

C/T), as with mtDNA substitutions.13,14 We therefore specified

that all sequencing errors would be A/C or G/T changes, whereas

all heteroplasmy would involve A/G or C/T changes, so that we

could readily distinguish sequencing errors from heteroplasmy
3, 2010



Figure 1. False-Negative Error Rate and
False-Positive Error Rate in Detecting Het-
eroplasmy Inferred from Simulation
False-negative error rate and false-positive
error rate calculated under different error
rates (1%, 0.5%, 0.3%, 0.1%), coverage
(363, 763), heteroplasmy levels (minor
allele frequencies of 10%, 20%, 30%,
40%), and frequency thresholds used to
define heteroplasmy (40%, 30%, 20%,
10%). For each setting, the simulation
was repeated 100 times. FP denotes the
false-positive error rate, FN denotes the
false-negative error rate.
in our simulations. For each setting, the simulation was repeated

100 times.

PhiX174 Data for Permutation Test
In each Illumina GA sequencing run, the phiX174 bacteriophage

genome is sequenced on a separate lane to very high coverage

(about 60,0003) and then used as a control for sequencing-error

correction for that run. Theoretically, there should be no hetero-

plasmy in the phiX174 genome, given that it is from a single

strain, although in fact Illumina technical support reports five

SNPs in phiX174 genome sequences. Therefore, we applied our

criteria for detecting heteroplasmy to the phiX174 data, to esti-

mate the false-positive error rate associated with various criteria.

To simulate different sequencing depths, we retrieved subsets of

the reads from the phiX174 control, and for each depth (15-, 30-,

60-, 90-, 120-, 150-, 180-, 210-, 600-, and 1200-fold average

coverage), we repeated the simulations 100 times.

MtDNA Polymorphism Data
Polymorphic positions were retrieved from Mitomap,7 mtDB,43

4775 whole mitochondrial genomes from GenBank,44 and 700

whole mitochondrial genomes from our laboratory (unpublished

data). The relativemutation rate (RMR) for each polymorphic posi-

tion was retrieved from Soares et al.45 Disease-associated positions

were retrieved also from Mitomap7 (April 27, 2010 version); when

defining a heteroplasmy as disease-associated, both the nucleotide

position and the specific mutation were considered.

Haplogroup-defining positions were retrieved from Phylotree,46

and an in-house script was used to collect all the haplogroup-

defining positions and the corresponding mutation type, which

were then used to identify heteroplasmies occurring at such hap-

logroup-defining positions.

Validation of Heteroplasmies
To independently verify the heteroplasmic positions inferred

from high-throughput sequencing, we performed single-base
The American Journal of Human G
extension assays for nine heteroplasmic

sites. Primers were designed to amplify

shorter products around these sites for

both control and heteroplasmic individ-

uals with the use of original DNA as

template (Table S1, available online). All

single-base extension assays were carried

out with the ABI Prism SnaPshot Kit

(Applied Biosystems), with amplicons

detected via capillary electrophoresis on
an ABI Prism 3100 Genetic Analyzer according to the manufac-

turer’s instructions.

Results

Sequencing Overview

A total of 45 million reads were generated for the 131

samples and four replicates, and 94% of the reads could

be mapped to the rCRS. For the 36 bp reads, the average

coverage was 67 5 7 (mean 5 standard deviation); mean-

while, 96.8% of the positions had coverage greater than

363 and at least ten reads for each strand. For the 76 bp

reads, the average coverage was 2115 21, and 98.6% posi-

tions had coverage greater than 363 and at least ten reads

for each strand.

Simulations

We used simulations to explore the effects of different

sequencing error rates, coverage, and threshold of the

minor allele frequency to define heteroplasmy, on the

false-positive error (i.e., calling a sequencing error a hetero-

plasmy) and false-negative error (i.e., failing to call a true

heteroplasmy) rates. Results are shown in Figure 1; 363

coverage is close to the lowest coverage that we have in

our samples, whereas 763 coverage is close to the average

coverage in our samples. The results illustrate the tradeoff

that occurs between the false-positive and false-negative

rates. When the heteroplasmy threshold is set relatively

high (more than 10%), there are no false positives, even

with a high sequencing error rate, but the false-negative

rate is quite high, indicating that many true heteroplas-

mies will be missed. When the threshold is set relatively

low (10% or less), the false-negative rate becomes very
enetics 87, 237–249, August 13, 2010 239



Table 1. Number of Heterozygous Positions Detected in the
PhiX174 Genome under Different Criteria

No Quality Filter QS R 20 QS R 23

Validated by
one strand

582.9 5 40.9a 192.8 5 14.0 126.3 5 24.6

Validated by
two strands

17.9 5 4.7 3.0 5 1.4 1.9 5 1.0

a Standard deviation based on 100 resamplings of the data.

Table 2. Number of Heteroplasmies Detected with PhiX174
Permutation Data

Frequency Threshold

One Direction Two Directions

Detection Rate 0.05 0.1 0.2 0.3 0.4 0.05 0.1 0.2 0.3 0.4

> 50% 3 1 1 1 1 1 1 1 1 1

25%–50% 2 0 0 0 0 0 0 0 0 0

10%–24% 2 2 0 0 0 0 0 0 0 0

5%–9% 2 2 0 0 0 1 0 0 0 0

< 5% 8 0 0 0 0 0 0 0 0 0
low, but now the false-positive rate becomes unacceptably

high. Acceptable false-positive and false-negative rates can

apparently be achieved only if the sequencing error rate

can be reduced to 0.1% (Figure 1) or if the average coverage

is increased.
PhiX174 Analysis and Development of Criteria

The phiX174 genome is routinely sequenced to very high

coverage in a separate lane in each Illumina GAII run, in

order to provide baseline error rates for the base-calling soft-

ware. Because in theory the phiX174 data should come

from a single pure strain, there should not be any polymor-

phism, although five SNPs have been reported (Illumina

technical support). Thus, any ‘‘heteroplasmic’’ position

after assembly is presumably caused by sequencing error.

We therefore investigated other ways to reduce false posi-

tives by applying various criteria to the phiX174 reads.

Reads were randomly retrieved from the control lane to

simulate a sequencing depth of 64-fold, and this procedure

was repeated 100 times for each analysis. The number of

heterozygous positions (defined as positions with at least

one read with an alternative base) after assembly is shown

in Table 1. Sequencing error is indeed an important issue,

because in the absence of any QS filtering, 11% (583 out

of 5386) of the positions were affected, and some of them

can even reach a minor allele frequency between 20%

~30%. QS filtering can improve the situation, but even

a fairly stringent QS (QS R 23) leaves many heterozygous

positions (Table 1). However, double-strand validation

(i.e., requiring at least one read from each strand) consider-

ably reduces the impact of sequencingerror;withnoquality

filter, double-strand validation reduces the average number

of heterozygous positions from 583 to 18 (Table 2). And

with a combination of a stringent quality filter and

double-strand validation, only two heterozygous positions

are detected on average. Note that this better performance

of double-strand validation was not caused by any bias in

the number of reads in one direction, because all positions

have a coverage greater than40andat least ten reads in each

direction. Instead, sequence errors tend to be context

specific, and hence the majority of sequence errors are

found on only one strand.

To investigate the performance of double-strand valida-

tion with various frequency thresholds for calling hetero-

zygous positions, we carried out additional simulations

using an average coverage of 66, to mimic our real data.

Table 2 compares the results of single- versus double-strand
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validation for various thresholds (for other sequencing

depths, see Table S2), requiring QS R 20 at the position

in question (and QS R 15 for the 5 bp flanking sequence

on each side). As expected, a lower frequency threshold

resulted in a higher false-positive rate, but only one false

positive was consistently detected with double-strand vali-

dation and a frequency threshold of 10% or more. This

position (1301) is not included in the five SNPs previously

reported, but it has been found to be polymorphic by

another laboratory (T. Skelly, personal communication),

so it is likely to be a novel SNP in the phiX174 genome.

On the basis of both the simulations and the phiX174

analyses, we decided on the following criteria for calling

a heteroplasmic position: QS R 20 at the position in ques-

tion, QS R 15 at the 5 bp flanking either side, a minor

allele frequency of at least 10%, and the minor allele

observed in at least one read in each direction. These

criteria should result in no false positives, and we should

have 100% power to detect heteroplasmies present at

a frequency of 20% or more and 50% power to detect het-

eroplasmies at a frequency of 10%.

Artificially Mixed Samples and Improvement

of the Criteria

To test the sensitivity and specificity of these criteria, we

applied them to three artificially mixed samples consisting

of DNA derived from two individuals in different ratios

(1:9, 1:3, 1:1) whose mtDNA genome sequences differ at

25 positions. All 25 positions were observed to be hetero-

plasmic, with inferred frequencies closely corresponding

to those expected (Figure 2), except for six positions for

the 1:9 mixture, which fell close to, but below, the 10%

threshold. The Pearson correlation coefficient between the

heteroplasmic level estimated from sequencing and the

actual proportion is 0.944 (p < 0.001), in good agreement

with a previous study of artificially mixed samples ana-

lyzed by high-throughput sequencing.47 Four potential

false positives were observed: position 7030AC (the first

letter denotes the majority nucleotide and the second

letter the minority nucleotide), with a minor allele fre-

quency of 12% in the sample with a 1:1 ratio; position

13604GA, with minor allele frequencies of 10% and 12%

in the 1:3 and 1:9 mixtures, respectively; and the A
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Figure 2. Heteroplasmy Level Estimated from Sequencing
Reads for the Expected Heteroplasmic Positions in the Artificially
Mixed Samples
Horizontal lines indicate the expected heteroplasmy levels. The
rightmost column gives the mean and standard error of the
mean value of all heteroplasmic positions under each mixture
ratio.
homopolymer region beginning at 12418, where 11% of

the reads have 7A and 89% have 8A in the 1:9 mixture.

However, as shown below, position 13604GA is actually

inferred to be heteroplasmic, with a minor allele frequency

of 11%, in the sample (Ir43) that was used as the major

component in the mixed samples. Moreover, the A homo-

polymer region beginning at 12418 was heteroplasmic in

both of the samples, with a minor allele (7A) frequency

of 12% and 10%, respectively. Therefore, only position

7030 qualifies as a true false positive. A more stringent

requirement of QS R 23 at the heteroplasmic position

(rather than QS R 20) would eliminate this false positive,

but it would also remove an unacceptably high number

of other reads for the true heteroplasmies. However,

requiring two distinct reads from each strand would also

eliminate this false positive while retaining all of the other

inferred heteroplasmies. Therefore, we adjusted the criteria

for heteroplasmy to require that the minor allele was

observed in at least two independent reads from each

strand.
Frequency Variation between Replicates

Four samples were sequenced twice independently, allow-

ing us to assess how inferred minor allele frequencies

varied between replicates. The average frequency variation

between replicate pairs was 0.0057 5 0.011, and there

were 42 positions having a minor allele frequency differ-

ence greater than 0.1 (Figure 3). More stringent QS filtering

(QS R 23 for the position in question and QS R 20 for the

5 bp flanking sequence on each side) reduced but did not

eliminate the discrepancies; 19 positions still had a minor

allele frequency difference greater than 0.1. Moreover, low

coverage does not appear to play a significant role, because

only five positions have a coverage lower than 10 in one of

the replicates.
The Americ
However, for 21 of the 42 positions with a minor allele

frequency difference bigger than 0.1, the nucleotides

involved were A and C (Table S3). Moreover, for many of

these positions, the minor allele is observed on only one

strand, indicating that the discrepancy between replicates

is due to an increase in theminor allele on one strand only,

consistent with sequencing errors. This same pattern was

observed for another four positions in which A and T

were involved (Table S3). The one exception to this pattern

is position 385 for Az41, for which A andG are observed on

both strands in both replicates. The frequency of theminor

(G) allele was 20% versus 8.7% in the replicates; however,

the difference was not significant (p ¼ 0.059, Fisher’s exact

test). It is likely that this is a real heteroplasmic position

and that the frequency difference between replicates is

due to stochastic effects. All of the remaining 16 positions

were located in the homopolymer region, for which

inaccurate alignment can explain the large minor allele

frequency difference.

Genome-wide Characterization of Heteroplasmy

Application of the criteria developed above to the full data

set of 131 individuals resulted in the detection of 37 point

heteroplasmies among 32 individuals (Table 3), or 24% of

the individuals studied. The average coverage for the heter-

oplasmic positions is 79 (range: 28–170), and for only

four positions (3014GT, 3492AC [twice], 10208CT) was

the minor allele observed in fewer than six reads. Five

individuals possessed two heteroplasmies each; overall,

the number of heteroplasmies per individual did not dif-

fer significantly from the expectation when 37 heteroplas-

mies are randomly assigned to 131 individuals (p > 0.05).

There were also no significant differences in how hetero-

plasmies were distributed among populations or among

haplogroups. However, three heteroplasmies (146CT,

3492AC, 16223TC) occurred at the same position in two

different individuals who belonged to different popula-

tions and had different mtDNA haplogroups; thus,

these are likely to represent independent heteroplasmies.

This is significantly more than expected by chance if

heteroplasmies occur randomly across themtDNA genome

(p < 0.001).

We also detected three indel heteroplasmies (outside

homopolymer regions) among three individuals (Table 4).

One of these was located in a tRNA gene, whereas the other

two were in the control region. In addition, we observed

another 112 indels in the following homopolymer and

STR regions (with the variation observed indicated in

parentheses): 66~71 (5C-6C), 303~309 (6C-9C), 514~523

(5CA-6CA), 12418~12425 (7A-8A), and 16184~16193

(9C-12C). Even if we only use the reads that span these

homopolymer and STR regions, we still observed these

length variations in at least two distinct reads per strand.

However, slippage of the DNA polymerase during replica-

tion can also result in length variation, which is frequently

observed in the homopolymer and STR region.48,49

Therefore, the indel heteroplasmic regions would need
an Journal of Human Genetics 87, 237–249, August 13, 2010 241



Figure 3. Distribution of Frequency
Differences between Replicates
Only positions with a frequency difference
greater than 0.01 are shown.
additional validation, ideally by a method that does not

require PCR amplification, and for this reason we do not

include these regions in our analysis of heteroplasmy.

Validation of Heteroplasmies

We selected nine heteroplasmic sites for independent

validation via single-base extension assays. For each site,

the predicted heteroplasmy state was observed in the cor-

responding individual (Figure S1), whereas control individ-

uals lacking the heteroplasmy displayed only single peaks

in the assays (data not shown). These results indicate

that the heteroplasmies inferred by analysis of high-

throughput sequencing reads are indeed true heteroplas-

mies, because they are validated by another method.

Patterns of Heteroplasmy Variation

Thirteen of the 34 heteroplasmic positions are located in

the control region, which is more than expected by chance

if heteroplasmic positions are distributed randomly across

the mtDNA genome (p < 0.001, chi-square test). The ratio

of transitions to transversions at heteroplasmies is 8.25,

which is not significantly different (p ¼ 0.616, Fisher’s

exact test) from the ratio of 8.09 for polymorphic positions

in the same individuals. Moreover, the mutational spec-

trum for heteroplasmies does not differ significantly from

that for polymorphisms in the same populations, or from

the mutational spectrum for polymorphisms reported in

the Mitomap database (Figure 4).

For investigation of the correlation between the inci-

dence of heteroplasmy and mutation rates, the RMR for

each heteroplasmic position was obtained from a previous

study.45 We classified the heteroplasmic positions into

three categories: entire genome, control region, and cod-

ing region; the comparisons of RMR between heteroplas-

mic positions with all positions and all mutable positions

in each category are shown in Table 5. Heteroplasmic posi-
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tions have higher mutation rates in

all categories, significantly so except

when compared to all mutable posi-

tions in the coding region. Overall,

heteroplasmies are occurring prefer-

entially at positions with high muta-

tion rates. This is particularly evident

in the control region, in which six of

the ten positions with the highest

mutation rates (Soares et al.45) were

found to exhibit heteroplasmy in our

study.

We detected 21 heteroplasmies at

20 positions in the protein-coding

genes (3492AC is shared by two indi-
viduals). Ten of these are nonsynonymous mutations, ten

are synonymous mutations, and one is located in the

overlap region involving the ATP6 (MIM 516060) and

ATP8 (MIM 516070). There is an excess of nonsynony-

mous mutations at the heteroplasmic positions when

compared to polymorphism data from the same individ-

uals (164 nonsynonymous and 385 synonymous muta-

tions; p¼ 0.051, Fisher’s exact test) or to a previous study50

(413 nonsynonymous and 1037 synonymous mutations;

p ¼ 0.045, Fisher’s exact test).

Five of the ten nonsynonymous heteroplasmies are

located at positions with an assigned RMR,45 and one of

them is located at the position with the highest RMR

among 824 nonsynonymous mutations (5460AG, RMR ¼
36). Two other nonsynonymous heteroplasmies also have

high RMR (15314GA, RMR ¼ 12; 11253CT, RMR ¼ 5),

whereas the other two (7754AG, 8743GA) both have

RMR ¼ 1. The heteroplasmic nonsynonymous sites tend

to have higher mutation rates than previously reported

nonsynonymous mutations in polymorphism data45

(p ¼ 0.068, Mann-Whitney test). The other nonsynony-

mous heteroplasmies—3492AC (which occurred twice),

3532AG, 14561AG, and 13604AG—have never been

observed as polymorphisms (based on sequences retrieved

from Mitomap,7 mtDB,43 and GenBank, as well as 700

unpublished mtDNA genome sequences from our labora-

tory). The overall ratio of nonsynonymous heteroplasmies

at sites without previously reported mutations, 5/10, is

significantly higher than that observed in polymorphism

data from the same individuals, 23/164 (p ¼ 0.01, Fisher’s

exact test). There is thus a dichotomous tendency for non-

synonymous heteroplasmies to occur either at rapidly

evolving sites or at sites that have not been observed as

polymorphisms. Eight of the ten synonymous mutations

have an assigned RMR;45 the average RMR for these eight

positions is 3.0 5 2.6, which is higher than the overall



Table 3. Point Heteroplasmies Detected in 131 Individuals

Position Individual Coverage Major Allele Frequency Minor Allele Frequency Gene Annotationa

64 Ir28 82 T 0.87 C 0.13 CR

146 Ir17 62 T 0.90 C 0.10 CR

146 G65 186 T 0.80 C 0.20 CR

150b Arm17 69 C 0.88 T 0.12 CR

152 Ir11 71 T 0.89 C 0.11 CR

195b G67 67 T 0.90 C 0.10 CR

203 Az5 67 A 0.66 G 0.34 CR

204 Arm17 75 T 0.89 C 0.11 CR

1552 Ir54 69 G 0.87 A 0.13 12S

3014 Az10 44 G 0.86 T 0.14 16S

3492 Arm25 60 A 0.65 C 0.35 NS(ND1; Lys>Asn)

3492 G20 63 A 0.78 C 0.22 NS(ND1; Lys>Asn)

3532 Az14 73 A 0.82 G 0.18 NS(ND1; Thr>Ala)

4991 Az4 173 G 0.65 A 0.35 S(ND2)

5460b Az7 136 A 0.68 G 0.32 NS(ND2; Thr>Ala)

7754 T186 73 A 0.89 G 0.11 NS(COX2; Asn>Asp)

8152 Az46 80 G 0.88 A 0.13 S(COX2)

8551 Ir30 67 C 0.54 T 0.46 S/NS(ATP6/ATP8)

8743 Ir29 75 G 0.68 A 0.32 NS(ATP6; Val>Met)

10208 Ir10 57 C 0.89 T 0.11 S(ND3)

10427 Az39 68 G 0.85 A 0.15 tRNA-ARG

11253b G1 68 C 0.76 T 0.24 NS(ND4; Thr>Ile)

11692 G38 72 A 0.76 C 0.24 S(ND4)

11809 G82 72 T 0.78 C 0.22 S(ND4)

12654 Arm37 69 A 0.86 G 0.14 S(ND5)

13368 Arm19 196 G 0.54 A 0.45 S(ND5)

13604 Ir43 68 G 0.90 A 0.10 NS(ND5; Ser>Asn)

14527 G25 66 A 0.89 G 0.11 S(ND6)

14561 T9 63 A 0.78 G 0.22 NS(ND6; Asp>Gly)

14770 Az14 77 T 0.55 C 0.45 S(CYTB)

15046 T186 62 G 0.74 A 0.26 S(CYTB)

15314 Arm20 206 G 0.84 A 0.14 NS(CYTB; Ala>Thr)

16093 Az49 147 C 0.91 T 0.08 CR

16217 T30 65 C 0.91 T 0.09 CR

16223 G73 178 T 0.89 C 0.11 CR

16223 Arm20 190 T 0.89 C 0.11 CR

16362 G67 76 T 0.87 C 0.13 CR

a The abbreviations used for gene annotation: CR: control region; 12S: 12S rRNA; 16S: 16S rRNA; S: synonymous; NS: non-synonymous. Gene name is displayed if
it happens in the protein-coding genes, and amino acid change is displayed for non-synonymous mutation.
b Disease-associated positions reported by Mitomap.7
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Table 4. Indel Heteroplasmies Detected in 131 Individuals

Position Individual Coverage Allele 1 Frequency Allele 2 Frequency Gene Annotation

57 Ir28 82 C 0.84 - 0.16 CR

15940 Arm2 208 - 0.85 T 0.15 tRNA-THR

248 Ir10 68 A 0.84 - 0.16 CR
RMR of 2.0 for synonymous mutations, but not sig-

nificantly so (p ¼ 0.187, Mann-Whitney test). The other

two synonymous mutations have not been previously

observed as polymorphisms and hence do not have an

assigned RMR.

Finally, two heteroplasmic positions (3014GT, 1552AG)

are located in the stems of rRNA genes,51,52 with the major

alleles identical to the rCRS, and were not observed to be

polymorphic in the database. One heteroplasmic position

(10427AG) is located in the connection of two stems of

the tRNA-ARG (MIM 590005),53 and this position has an

RMR of 2.0.
Disease-Associated Heteroplasmies

Four of the 34 (11.8%) heteroplasmic positions are re-

ported as disease-associated in Mitomap7 (Table 3), which

is more than expected by chance (2.5% of all mtDNA posi-

tions are reported to be disease-associated in Mitomap;7

p ¼ 0.010, permutation test). However, all of these posi-

tions have also been reported previously as polymor-

phisms; moreover, there is also an excess number of poly-

morphisms at disease-associated sites in the mtDNA

genome sequences from the same individuals (6.1%; p <

0.001, permutation test).

It seems likely that disease-associated mutations with

mild effects will be observed as polymorphisms in ‘‘nor-

mal’’ individuals more frequently than disease-associated

mutations with strong effects. Overall, 22.4% of the

disease-associated mutations in Mitomap are also present

in normal populations and 77.4% are absent in normal
Figure 4. Mutation Spectrum for the Heteroplasmy and Poly-
morphism Data
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populations. All of the four disease-associated heteroplas-

mic positions are observed as polymorphisms in normal

populations, which is significantly more than expected

(p ¼ 0.003, permutation test). Moreover, the average RMR

for these four disease-associated heteroplasmic positions is

51, which is significantly higher than the average RMR of

2.72 for all mutable positions (p < 0.001, Mann-Whitney

test) and significantly higher than the average RMR of

8.8 for all disease-associated positions that also present

as polymorphisms in normal populations (p ¼ 0.007,

Mann-Whitney test).
Discussion

We first discuss issues related to the criteria for detecting

heteroplasmy, and we then discuss the implications of

our results.

Reducing the Impact of Sequencing Errors

Although the high-throughput sequencing technologies

have a higher per-base sequencing error rate compared

with the traditional capillary sequencers, the new technol-

ogies still give highly accurate sequences because of the

higher sequencing depth.39,42,54 However, this holds only

for assembling a consensus sequence or calling SNPs, in

which using a ‘‘majority rule’’ eliminates the impact of

sequencing error and produces the desired result. Trying

to detect heteroplasmy presents different issues, because

the minor allele at the heteroplasmic position may be

indistinguishable from sequencing error. QS filtering can

help eliminate sequencing errors but is insufficient to

completely solve the problem (Table 1).

The most obvious way to distinguish between

sequencing errors and heteroplasmy is to invoke a

threshold. Sequencing errors happen at a specific rate

(10�2~10�3, based on our unpublished data and other

studies39), so frequency of an error observed at low coverage

should decrease to this level with higher coverage, whereas
Table 5. Relative Mutation Rate at Heteroplasmic Positions

Heteroplasmic
Positions All Positions

All Mutable
Positions

Whole genome 24.95 0.645a 2.72a

Control region 64.08 3.74a 7.01a

Coding region 4.2 0.469a 2.05

a Significantly different from that of heteroplasmic positions at the p < 0.001
level in the Mann-Whitney test.
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the level of heteroplasmy should not change with the

coverage. However, sequencing errors are reported to be

position dependent and context dependent.36,39,42 In

fact, we have observed several sequencing error ‘‘hot spots’’

(including 257AC, 3492AC, 3511AC, 4774TA, 5290AT,

9801GT, 10306AC, 10792AC, 11090AC), defined here as

meeting the following criteria: (1)R 10%of the individuals

have the minor allele with frequency R 10% at this posi-

tion, but (2) the minor allele for R 90% of the individuals

cannot be validated by reads from both strands. As ex-

pected, most of the sequencing-error hotspots involve

misidentification of A to C; thus, some errors can reach

a high enough frequency to pass a simple frequency-

threshold criterion and contribute to false positives.

However, given that heteroplasmy is not strand depen-

dent and that it is highly unlikely that an error-prone

context would exist for the same position on both strands,

a useful filter is double-strand validation: heteroplasmies

are called only if both of alleles can be detected by reads

from both strands. Double-strand validation alone signifi-

cantly reduced the number of heterozygous positions

detected in the phiX174 sequence data (Table 1). However,

even double-strand validation is not sufficient to eliminate

all sequencing errors: one position (7030AC) in the artifi-

cially mixed samples passed this filter but is a false positive.

This can occur because sequencing error also occurs in the

other direction by the usual background error rate (e.g.,

with 40 reads in the non-error-prone direction and an error

rate of 0.3%, there is an 11% chance of observing at least

one error). We therefore implemented the requirement of

observing both alleles in at least two independent reads

from each direction to validate the heteroplasmy, and

the number of reads required on both strands should be

increased with a higher sequencing depth. Although this

requirement appears to be sufficient to eliminate virtually

all false positives due to sequence errors, it does increase

the probability of false negatives due to failure to observe

a trueminor allele in at least two reads from each direction,

especially when coverage is low.

Another aspect of Illumina GA sequencing errors is that

they tend to be position dependent: typically, the error rate

at the end of the read is approximately 2- to 6-fold higher

than at the beginning. One potential way to reduce the

false-positive errors that are caused by position-dependent

error might therefore be to require that heteroplasmies are

validated by the beginning or middle of reads. Indeed, this

requirement significantly reduced the number of heterozy-

gous positions in the phiX174 reads (see details in Table

S4). However, our data also suggest that the error at the

ends of the reads is equivalent to that in the middle of

the reads under the QS filtering that we applied (QS R

20 for the position in question and QS R 15 for the 5 bp

flanking sequence on each side), which may reflect the

fact that QS is correlated with the position in the read.

We therefore did not include the requirement of confirma-

tion by the beginning or middle part of the reads in order

to call a heteroplasmy.
The Americ
Impact of Assembly Strategy on Calling

of Heteroplasmies

In addition to sequencing errors, inaccurate assembly

of the reads can create artificial heteroplasmies, because

the minor allele could come from reads originating

from another part of the mtDNA genome. To evaluate

whether heteroplasmy is caused by improper alignment,

we removed all reads with multiple best hits on the final

consensus sequence (i.e., mapping quality equals 0 when

assembling the reads by using Burrows Wheeler alignment

as implemented in the software BWA55), and none of the

inferred heteroplasmies disappeared. Therefore, incorrect

assembly does not appear to be influencing our results.

Another question concerning the assembly is whether to

use all reads or only unique reads (i.e., those with different

start and/or endpoints) from high-throughput sequencing

data.56–58 The concern is that duplicate reads may repre-

sent copies from the same molecule rather than indepen-

dent reads. We examined this question in the artificially

mixed samples and found that using unique reads versus

all of the reads does not influence the detection and level

of heteroplasmy (results not shown). However, when we

resampled the reads from the 1:3 mixture to investigate

the influence of sequencing depth, using duplicate reads

resulted in higher false-positive and false-negative error

rates than using unique reads (Table S5). Apparently,

with low coverage even a small number of duplicate reads

can have a large impact on the inferred minor allele

frequency. Because a large fraction (~27%) of the positions

in our samples have a sequencing depth less than 1503,

we used only the unique reads to infer heteroplasmies.

Impact of PCR on Calling of Heteroplasmies

PCR is another factor influencing the detection of hetero-

plasmy; biased amplification can alter the minor allele fre-

quency, and sequence error introduced during PCR ampli-

fication may be falsely detected as heteroplasmies.59,60

However, several observations indicated that PCR has

had little or no effect on our analyses: nine inferred heter-

oplasmy were genotyped by single-base extension assays,

and all nine were validated; the inferred heteroplasmy

level in artificially mixed samples was close to the mixture

ratio; and sequencing of four samples in duplicate showed

no frequency difference greater than 10% that could be

validated by the double-strand criterion. It should be noted

that all PCR products used in the above studies were inde-

pendently amplified from the original DNA template.

Therefore, possible artifacts from the PCR process do

not appear to be influencing our inferences concerning

heteroplasmy.

Other Factors that Influence the Detection

of Heteroplasmy

Besides sequencing error, assembly error, and PCR artifacts,

there are other processes that could potentially influence

the identification of heteroplasmic positions by generating

false positives. These include jumping PCR,61 inadvertent
an Journal of Human Genetics 87, 237–249, August 13, 2010 245



sequencing of nuclear mitochondrial pseudogenes

(numts),48,62 contamination during the library prepara-

tion, and the ‘‘stochastic effect’’ produced by random

sampling of sequencing reads. To what extent could these

be responsible for the heteroplasmies that we detected in

this study?

The first possibility is jumping PCR, which could result

in the incorrect allocation of a read to an individual,

because a parallel tagged approach was used in our study.61

However, after the indexing PCR of seven cycles, no addi-

tional PCR was performed on the pooled samples, so jump-

ing PCR should not be a problem.

Numts are another potential source of contamination

during mtDNA PCR amplification, because there are 46

paralogous nuclear DNA fragments that represent the

entire mitochondrial genome.62 However, instead of short-

range PCR or capture-based methods, which may be more

severely influenced by numts, we utilized long-range PCR.

No secondary amplification products were observed, and

moreover, 94% of the reads could be mapped to the

mtDNA genome, indicating that the reads are indeed orig-

inating from authentic mtDNA and not from numts.

Inadvertent sample mixtures or contamination could

also produce the appearance of heteroplasmy (indeed,

this was the basis for the artificially mixed samples). To

verify that such contamination does not explain inferred

heteroplasmies, we checked whether the content of the

heteroplasmies in one individual could be used to define

two different haplogroups in Phylotree.46 In fact, several

individuals in the original study (unpublished data) did

exhibit numerous putative heteroplasmic positions that

could be explained by sample mixtures involving two

different haplogroups; these individuals were excluded

from further analysis. In the 131 individuals used in this

study, sample mixtures involving any known haplogroups

cannot explain the inferred heteroplasmies.

A final concern is the ‘‘stochastic effect,’’ i.e., how much

variation can occur in sample replicates, and how this

would influence the inference of heteroplasmy. In the

four replicates, everything was repeated from the template

DNA via the samemethods; thus, any allele frequency vari-

ation for each position between these replicate pairs

should be caused by the stochastic effect. Although the

‘‘stochastic effect’’ could result in frequency variation

greater than 0.1, none could be validated by the double-

strand criteria, indicating that stochastic effects are

unlikely to produce false positives under our criteria for

detecting heteroplasmy.

Genome-wide Insights into Heteroplasmy

As discussed above, the heteroplasmies detected by our

criteria are unlikely to be caused by sequencing errors or

other artifacts. We now discuss the insights provided by

this large-scale examination of mtDNA genome-wide het-

eroplasmy. We identified 37 point heteroplasmies and

three indel heteroplasmies among 33 of 131 individuals

(25%), which is higher than the range of 3.8%–6%
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reported in previous studies that used other methods.13,63

We attribute this higher rate to the increased sensitivity

that high-throughput sequencing offers for detecting

heteroplasmy and to the fact that we are analyzing hetero-

plasmy across the entire mtDNA genome, whereas pre-

vious studies focused on the control region.

The familiar transition bias in human mtDNA mua-

tions64 was observed, in that 89% of the point heteroplas-

mies are transitions. Thirteen point heteroplasmies (35%)

were found in the control region, which is more than

expected, and all of them are located in hypermutable

positions (RMR R 6). An association between hetero-

plasmy and hypermutable positions was found previ-

ously,65 and overall, these results suggest that mutation is

the major driving force behind heteroplasmy and that a

mutation-drift process can explain how heteroplasmies

arise, drift to high frequencies within an individual, and

eventually become ‘‘fixed’’ as polymorphisms among

individuals.

However, in the protein-coding region, mutations are

located in both hypermutable positions and hypomutable

positions. Altogether, eight heteroplasmies are located in

positions that have never been reported to mutate, which

is more than expected by chance (p ¼ 0.04). Moreover,

there is a significant excess of heteroplasmies involving

nonsynonymous changes in comparison to polymor-

phism data. It thus seems as if deleterious mutations arise

as heteroplasmies and can reach appreciable frequencies

(> 10%) within individuals but do not drift to fixation.

Instead, purifying selection must be operating on some

heteroplasmies to prevent their fixation within individ-

uals. Although purifying selection on mtDNA has been in-

ferred from other studies,66–68 no previous evidence of

such selection involving heteroplasmy has been found,69

which may reflect the limited number of heteroplasmies

previously studied in the coding region.

Significantly more heteroplasmies were detected in

disease-associated positions than expected by chance, but

all of them were also observed to be polymorphic in the

same population or in our polymorphism data set and,

moreover, are associated with high mutation rates. These

are not characteristics expected to be associated with dele-

terious mutations and hence may reflect limitations on the

accuracy of studies that attempt to elucidate disease-associ-

ated mtDNA mutations. Or, these may be associated with

mild effects on the phenotype. Still, we found that even

in comparison to the polymorphism profile, there is an

excess number of heteroplasmies in disease-associated

positions. It is thus possible that these disease-associated

heteroplasmies may drift to high enough frequencies

within an individual to result in the disease phenotype

and/or that they will be removed by purifying selection.

Detecting Heteroplasmy by High-Throughput

Sequencing Technology

We have developed a set of criteria to detect heteroplasmy

in complete human mtDNA genomes from the reads
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generated by Illumina GAII technology. Recently, another

study used the same sequencing technology to investigate

mtDNA heteroplasmy.14 This study sequenced only one

individual per lane, to an average coverage of ~16,000,

and hence used a correspondingly lower threshold for

the minor allele frequency of 1.6% to call heteroplasmic

positions. They detected 40 heteroplasmies above this

threshold in ten healthy individuals;14 of these, seven het-

eroplasmies in four individuals had a minor allele fre-

quency greater than the 10% threshold that we used.

This is significantly more than the 37 point heteroplasmies

that we detected among 131 individuals (p ¼ 0.02, resam-

pling test). Possible reasons for this difference include:

a higher false-negative error rate in our study, which is

due to lower sequencing depth; the different tissues used

(blood and saliva in our study, colonic mucosae in their

study14); and/or the relatively old age of individuals in

their study.14

Although sequencing to a much higher depth obviously

increases the power to detect heteroplasmies by lowering

the minor allele frequency threshold, stringent quality

control procedures are still necessary to determine a proper

frequency threshold. In fact, we note that in the previous

analysis of heteroplasmic variants among tissues from

a single individual (Table 2 of He et al.14), five of 14

heteroplasmies (36%) involve AC/GT changes, which is

the most common sequencing error on the Illumina

GA platform. This is significantly more than the 9%

frequency of AC/GT changes among heteroplasmies in

our study (p < 0.05), and it therefore suggests that some

of these are likely to reflect false positives due to

sequencing errors.

The strategy used to detect heteroplasmic variants

can therefore vary, depending on the goal of the study

(and available funding). Sequencing one sample per lane

(or even one sample on multiple lanes) will lower the

threshold for detecting heteroplasmic variants but will

increase the cost and therefore limit the number of sam-

ples that can be studied. Parallel tagged approaches, which

were used here, result in lower coverage and hence require

a higher minor allele frequency to call a heteroplasmy, but

they are a more cost-efficient approach for analyzing heter-

oplasmy in a large number of samples. Indeed, we predict

that the next few years will see a huge increase in complete

mtDNA genome sequences generated to an average

coverage of ~503–1003 with next-generation sequencing

platforms. These data will provide a rich resource for

further investigation of heteroplasmy. Regardless of the

strategy and average coverage obtained, our results indi-

cate that accurate calling of heteroplasmic positions

requires the analysis of control data and an appropriate

statistical model to generate appropriate criteria. With

such appropriate criteria for avoiding false positives due

to sequencing errors, high-throughput sequencing plat-

forms can provide a reliable genome-wide heteroplasmy

map, which can provide further insights into mtDNA-

related diseases and the evolution of mtDNA.
The Americ
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